Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing
نویسندگان
چکیده
Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids.
منابع مشابه
Genotyping-by-Sequencing and Its Exploitation for Forage and Cool-Season Grain Legume Breeding
Genotyping-by-Sequencing (GBS) may drastically reduce genotyping costs compared with single nucleotide polymorphism (SNP) array platforms. However, it may require optimization for specific crops to maximize the number of available markers. Exploiting GBS-generated markers may require optimization, too (e.g., to cope with missing data). This study aimed (i) to compare elements of GBS protocols o...
متن کاملThe Impact of Genotyping-by-Sequencing Pipelines on SNP Discovery and Identification of Markers Associated with Verticillium Wilt Resistance in Autotetraploid Alfalfa (Medicago sativa L.)
Verticillium wilt (VW) of alfalfa is a soilborne disease causing severe yield loss in alfalfa. To identify molecular markers associated with VW resistance, we used an integrated framework of genome-wide association study (GWAS) with high-throughput genotyping by sequencing (GBS) to identify loci associated with VW resistance in an F1 full-sib alfalfa population. Phenotyping was performed using ...
متن کاملGenotyping of Acanthamoeba Species Isolated from Keratitis Patients by PCR Sequencing Methods in Tehran, Iran
Background and Aims: Amoebae of the genus Acanthamoeba are unicellular amphizoic opportunistic pathogens that may cause fatal granulomatous encephalitis, eye keratitis, amebic pneumonitis and skin nodules as well as abscesses in humans and animals. Acanthamoeba keratitis is caused by trauma to the eye, contaminated cleaning solutions and the use of contact lenses. The aim of the present study w...
متن کاملIdentification of Molecular Markers Associated with Verticillium Wilt Resistance in Alfalfa (Medicago Sativa L.) Using High-Resolution Melting
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations...
متن کاملSNP Discovery in European Anchovy (Engraulis encrasicolus, L) by High-Throughput Transcriptome and Genome Sequencing
Increased throughput in sequencing technologies has facilitated the acquisition of detailed genomic information in non-model species. The focus of this research was to discover and validate SNPs derived from the European anchovy (Engraulis encrasicolus) transcriptome, a species with no available reference genome, using next generation sequencing technologies. A cDNA library was constructed from...
متن کامل